Python Learning
Python complete learning & practical application roadmap 👇
🧱 1. Python Foundations (Essentials for DevOps)
Even if you already code in Bash, Python’s flexibility and readability make it superior for scaling automation.
Key Topics
- Variables, loops, conditionals, functions
- Data structures: lists, tuples, sets, dicts
- File I/O and environment variables
- Error handling and logging
- Virtual environments (
venv,poetry) - Basic CLI scripting (
argparse,click)
Example
import os
import sys
def greet(env="dev"):
print(f"Deploying to {env} environment...")
if __name__ == "__main__":
env = sys.argv[1] if len(sys.argv) > 1 else os.getenv("DEPLOY_ENV", "dev")
greet(env)
✅ Outcome: Comfortably write small automation scripts to replace Bash.
⚙️ 2. DevOps-Oriented Python Skills
These are the core skills that make Python your automation powerhouse.
| Area | Libraries/Tools | Example Use |
|---|---|---|
| System Automation | os, subprocess, pathlib, shutil |
manage files, execute shell commands |
| Networking | requests, httpx, paramiko |
API calls, SSH automation |
| Serialization | json, yaml |
config templating for CI/CD |
| Templating | jinja2 |
generate Helm, Docker, Jenkins YAML |
| Concurrency | asyncio, concurrent.futures |
run many SSH/API tasks in parallel |
✅ Outcome: You can automate and parallelize tasks across clusters, VMs, or CI pipelines.
🧰 3. CI/CD & DevOps Integration
Integrate Python into your pipelines.
Common Use Cases
- Jenkins pipeline steps in Python (
sh "python3 deploy.py") - GitHub Actions workflows calling Python scripts
- ArgoCD custom hooks or pre/post-deploy scripts
- Log parsing and report generation
Example: Automate Jenkins Job via API
import requests
from requests.auth import HTTPBasicAuth
jenkins_url = "https://jenkins.example.com/job/deploy/build"
auth = HTTPBasicAuth("jenkins_user", "token")
res = requests.post(jenkins_url, auth=auth)
print("Triggered:", res.status_code)
✅ Outcome: Python becomes your universal glue between Jenkins, ArgoCD, Vault, etc.
☸️ 4. Infrastructure & Cloud Automation
Use Python to control Kubernetes, Docker, or cloud APIs directly.
Tools
- Kubernetes:
kubernetesPython client (pip install kubernetes) - Docker:
docker-py - AWS/GCP/DO APIs:
boto3,google-cloud,python-digitalocean - Terraform automation:
python-terraform
Example: List pods in all namespaces
from kubernetes import client, config
config.load_kube_config()
v1 = client.CoreV1Api()
for pod in v1.list_pod_for_all_namespaces().items:
print(f"{pod.metadata.namespace}/{pod.metadata.name}")
✅ Outcome: Python gives you programmable infrastructure control.
📊 5. Monitoring & Observability Automation
- Query Prometheus or Grafana via API
- Parse logs from Loki or OpenSearch
- Build alerts or reports automatically
- Integrate with Slack or Telegram bots
Example: Slack Alert
import requests
msg = {"text": "⚠️ Deployment failed on cluster-monitor!"}
requests.post("https://hooks.slack.com/services/XXXX", json=msg)
🧠 6. Long-Term Skills to Grow
- Packaging: build CLI tools with
setuptools,typer - Testing:
pytestfor DevOps scripts - GitOps integration: automate repo changes (Helm updates, ArgoCD syncs)
- Security: scan IaC with Python wrappers around
trivy,bandit, etc.
🚀 Suggested Practice Projects
- Kubernetes Node Cleaner – Python script that taints & drains nodes automatically
- Jenkins Job Runner – CLI to trigger, monitor, and log Jenkins jobs
- Kube Backup Bot – backs up YAMLs of all resources daily to Git
- Slack Alert System – integrates with Prometheus webhook receiver
- Multi-Cluster Status Dashboard – aggregates node/pod status across clusters