Python complete learning & practical application roadmap 👇


🧱 1. Python Foundations (Essentials for DevOps)

Even if you already code in Bash, Python’s flexibility and readability make it superior for scaling automation.

Key Topics

  • Variables, loops, conditionals, functions
  • Data structures: lists, tuples, sets, dicts
  • File I/O and environment variables
  • Error handling and logging
  • Virtual environments (venv, poetry)
  • Basic CLI scripting (argparse, click)

Example

import os
import sys

def greet(env="dev"):
    print(f"Deploying to {env} environment...")

if __name__ == "__main__":
    env = sys.argv[1] if len(sys.argv) > 1 else os.getenv("DEPLOY_ENV", "dev")
    greet(env)

Outcome: Comfortably write small automation scripts to replace Bash.


⚙️ 2. DevOps-Oriented Python Skills

These are the core skills that make Python your automation powerhouse.

Area Libraries/Tools Example Use
System Automation os, subprocess, pathlib, shutil manage files, execute shell commands
Networking requests, httpx, paramiko API calls, SSH automation
Serialization json, yaml config templating for CI/CD
Templating jinja2 generate Helm, Docker, Jenkins YAML
Concurrency asyncio, concurrent.futures run many SSH/API tasks in parallel

Outcome: You can automate and parallelize tasks across clusters, VMs, or CI pipelines.


🧰 3. CI/CD & DevOps Integration

Integrate Python into your pipelines.

Common Use Cases

  • Jenkins pipeline steps in Python (sh "python3 deploy.py")
  • GitHub Actions workflows calling Python scripts
  • ArgoCD custom hooks or pre/post-deploy scripts
  • Log parsing and report generation

Example: Automate Jenkins Job via API

import requests
from requests.auth import HTTPBasicAuth

jenkins_url = "https://jenkins.example.com/job/deploy/build"
auth = HTTPBasicAuth("jenkins_user", "token")

res = requests.post(jenkins_url, auth=auth)
print("Triggered:", res.status_code)

Outcome: Python becomes your universal glue between Jenkins, ArgoCD, Vault, etc.


☸️ 4. Infrastructure & Cloud Automation

Use Python to control Kubernetes, Docker, or cloud APIs directly.

Tools

  • Kubernetes: kubernetes Python client (pip install kubernetes)
  • Docker: docker-py
  • AWS/GCP/DO APIs: boto3, google-cloud, python-digitalocean
  • Terraform automation: python-terraform

Example: List pods in all namespaces

from kubernetes import client, config

config.load_kube_config()
v1 = client.CoreV1Api()
for pod in v1.list_pod_for_all_namespaces().items:
    print(f"{pod.metadata.namespace}/{pod.metadata.name}")

Outcome: Python gives you programmable infrastructure control.


📊 5. Monitoring & Observability Automation

  • Query Prometheus or Grafana via API
  • Parse logs from Loki or OpenSearch
  • Build alerts or reports automatically
  • Integrate with Slack or Telegram bots

Example: Slack Alert

import requests

msg = {"text": "⚠️ Deployment failed on cluster-monitor!"}
requests.post("https://hooks.slack.com/services/XXXX", json=msg)

🧠 6. Long-Term Skills to Grow

  • Packaging: build CLI tools with setuptools, typer
  • Testing: pytest for DevOps scripts
  • GitOps integration: automate repo changes (Helm updates, ArgoCD syncs)
  • Security: scan IaC with Python wrappers around trivy, bandit, etc.

🚀 Suggested Practice Projects

  1. Kubernetes Node Cleaner – Python script that taints & drains nodes automatically
  2. Jenkins Job Runner – CLI to trigger, monitor, and log Jenkins jobs
  3. Kube Backup Bot – backs up YAMLs of all resources daily to Git
  4. Slack Alert System – integrates with Prometheus webhook receiver
  5. Multi-Cluster Status Dashboard – aggregates node/pod status across clusters